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ABSTRACT

Integrals of the form [JA,,T™ e £/%7T dT have been evaluated for integer and fractional
values of m = b —2. The results of the numerical integration are presented for Arrhenius
integrals having negative as well as positive exponents. Equations have been derived which
relate m to the natural logarithm of the p(x) function. Methods for the rapid evaluation of
general temperature integrals for any combination of m and x, from four different ap-
proximations, are also presented.

INTRODUCTION

Non-isothermal methods have been widely used for the evaluation of
kinetic parameters of decomposition reactions [1-7]. The rate of a decom-
position process can be described [5] as the product of two separate
functions of temperature and conversion as

% = k(T)f(a) (1)
where the function k7, is temperature dependent and f(a) is the conversion
function which depends on the reaction mechanism. Earlier workers [8] have
shown that for a series of isothermal mass-loss measurements, plots of log ¢,
the time taken to reach a percentage mass loss, vs. 1/7, the reciprocal
absolute temperature, are linear. This shows that the temperature depen-
dence is of the Arrhenius type, and therefore k ) can be considered as the
rate constant, k

k=Ae E/RT (2)

where 4 and E are the Arrhenius pre-exponential factor and activation
energy respectively, and R is the gas constant.
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Substituting in eqn. (1), we get

fl_‘i _ —E/RT,

g, =A4e f(a) (3)
For a linear heating rate ¢, eqn. (3) becomes

da A4 e

a7~ o° f(a) (4)

Equation (4) may be considered as the general equation connecting E, A4
and n [when f(«) is assumed as (1 — a)"].

Most of the existing methods to evaluate the kinetic parameters utilize
eqn. (4) in three different approaches [9], viz. integral, differential and
approximation. The most accurate among them are the integral methods
[5,10].

On rearranging and integrating eqn. (4) between the limits of a =0 at 7,
and a at T, we get

“ da A (T _prr

—=—1ce dar 5
ATy ®)
where [J[da/f(«)] is the conversion integral. The lower limit 7; is generally
taken as zero for the ease of integration [11]. The integral form of the LHS is
g(a) and thus, eqn. (5) can be written as

g(a) = %/(;Te_E/RTdT (6)

In the integral methods, it is usually assumed that the pre-exponential
factor, A is temperature independent [3,4]. However, the transition state
theory predicts that A is temperature dependent [12,13]. Therefore, eqn. (6)
becomes

sla) = 22 [Te-/r7ar )
The temperature dependence of A can be represented as

Aqgy=A4,T" (8)
Substituting eqn. (8) in eqn. (7), we get

ga) = 2 [TemETar ©
A,, is now temperature independent.

There are two general cases where m=0.5 and 1.0 for solid state
reactions. However, other possibilities have also been found where m varies
from —4 to +2 [14]. When x = E/RT is substituted, eqn. (9) becomes

o) = 22(£)" 7[5 ox (10

X
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when b= (m+ 2) is substituted, eqn. (10) reverts to the standard form of

. . e :
the incomplete gamma function, f —du, viz.

x u
Ay (ENT!
a)=2(%) P (1)
On rearranging and taking logarithms, eqn. (11) becomes
Ab E b—1
In g(a)——lnp(x)——ln?(i) (12)

Thus £ and A can be calculated, if the values of g(a) and p(x) are known.

The values of the temperature integral, p(x) can be evaluated from simple
approximation [15-17], numerical integration [18-20] and series solutions
[21-25]. The most important among the series solutions are Scholmilch,
semiconvergent, etc. The series solutions for p(x) with =2 have been
reviewed by Wendlandt and co-workers [26]. Segal [27] has derived ap-
proximations of the temperature integrals by assuming different positive
values of b. Several other studies were also reported for evaluating tempera-
ture integral values with b=0, +1/2, +1, +3/2 and +2 using different
approaches [28-31].

Recent papers [32-34] have compared different approximations and
shown that a Scholmilch series is the most accurate for x > 15. We have also
[35] proposed a new series approximation for the p(x) function which gave
very close values to those of the Scholmilch approximation. In the present
study, we have attempted to evaluate the p(x) values from four different
approximations for the range of values of b= —2(0.5) +4[or m= —4(0.5)
+2] and x = 15 (5) 60. The computation and curve fits were done by a CDC
computer using a FORTRAN IV program.

RESULTS AND DISCUSSION
It has been found that the values of p(x) evaluated from Scholmilch or
similar type of series are more accurate than those from asymptotic expan-

sions, and therefore the following equations are employed in this work

1. Scholmilch approximation [23]

- X

P = T ) el D)
+(x-+-1)..4.(x+4)_(x-+-1)..5.(x+5)+”' (13)

Where a,=b, a,=b> a;=b>+b, a,=b*+4b>—b and as;= b+ 10b>
+ 5b + 8b.
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2. Semiconvergent series

o) = e""[l_ b, b(b+1) b(b+1)(b+2)
+b(b+1).;.(b+3)_b(b+1).;.(b+4)+m (14)
3. New series approximation [35]
I N b(b*—1)
p(x) = x®b {1 (x+b+1) (B—-D(x+1D(x+2)(x+b+1)
N b*(b* - 1)
(b—D(x+1)..(x+3)(x+b+2)
B p(b* 1)
(b—1D(x+1)...(x+4)(x+b+3)
p(b° = 1)
+(b—1)(x+1)...(x+5)(x+b+4)""“} (15)
4. Three term approximation [35]
e b B (»*+1)
p(x) = o | (x+b+1) (x+l)(x+2)(x+b+l)] (16)

For the computation of p(x), expansions up to six terms were used in
eqns. (13), (14) and (15). However, in eqn. (16) only three terms are taken
because the third term represents the approximate sum of all the terms
beyond the second in egn. (15).

In order to prepare the complete set of numerical tables for p(x), x =15
(5) 60 and b= —2 (0.5) +4 were chosen. By introducing the numerical
values of x and b in eqns. (13), (14), (15) and (16), values of —In p(x) were
computed. A total of 120 sets of values thus obtained from the four
equations are given in Tables 1, 2, 3 and 4 respectively. From these tables, it
can be seen that the —In p(x) values for all the four approximations are
very close.

Dependence of —In p(x) on b

Using the above tabulated values of —In p(x), linear plots were drawn
for —In p(x) vs. b for different values of x. This linear relation can be
represented as

“Inp(x)=M+ Nb (17)
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TABLE 5

Curve fit constants for —In p(x) vs. b plots for eqn. (13)

X Slope (N) Intercept (M) r

15 2.767891 14.995273 0.99999956
20 3.041675 19.997173 0.99999987
25 3.256187 24.998121 0.99999994
30 3.432618 29.998661 0.99999997
35 3.582490 34.998997 0.99999998
40 3.712770 39.999222 0.99999999
45 3.827998 44.999938 0.99999999
50 3.931299 49.999465 0.99999999
55 4.024912 54.999576 1.00000000
60 4110502 59.999641 1.00000000

A total of 40 sets of values of slope, intercept and correlation coefficients
were calculated and these values are given in Tables 5-8. From these tables
it can be seen that the value of the slope increases with increase in x.
Similarly, intercepts also show the same increasing trend with increasing x.
Another interesting observation is that the intercepts obtained from the
curve fits tend to the theoretical values of x as the value of x increases. The
correlation coefficients also show the same trend. In all the cases studied the
correlation coefficients are almost unity, and therefore the four approxima-
tions are equally applicable for the computation of p(x) when x > 15.

Relation between slopes and x

Using the computed values of slope, several curve fits were tried with x. It
was found that the slope vs. In x plot is linear. The relation can be

TABLE 6
Curve fit constants for —In p(x) vs. b plots for eqn. (14)

x Slope (N) Intercept (M) r

15 2.768340 14.995461 0.99999966
20 3.041750 19.997257 0.99999988
25 3.256209 24.998129 0.99999995
30 3.432626 29.998663 0.99999997
35 3.582492 34.998998 0.99999998
40 3.712777 39.999222 0.99999999
45 3.828000 44.999379 0.99999999
50 3.931299 49.999492 0.99999999
55 4.024912 54.999576 1.00000000

60 4.110502 59.999642 1.00000000
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TABLE 7

Curve fit constants for —In p(x) vs. b plots for eqn. (15)

X Slope (N) Intercept (M) r

15 2.767717 14.995155 0.99999960
20 3.041627 19.997136 0.99999987
25 3.256168 24.998106 0.99999994
30 3.432609 29.998653 0.99999997
35 3.582484 34.998993 0.99999999
40 3.712767 39.999219 0.99999999
45 3.827996 44.999376 0.99999999
50 3.931298 49.999490 0.99999999
55 4024911 54.999576 0.99999999
60 4.110501 59.999641 0.99999999
TABLE 8

Curve fit constants for —In p(x) vs. b plots for eqn. (16)

x Slope (N) Intercept (M) r

15 2.767898 14.995518 0.99999959
20 3.041663 19.997287 0.99999987
25 3.256175 24.998182 0.99999994
30 3.432608 29.998697 0.99999997
35 3.582481 34.999021 0.99999998
40 3.712763 39.999237 0.99999999
45 3.827993 44.999389 0.99999999
50 3.931295 49.999500 0.99999999
55 4.024909 54.999582 0.99999999
60 4.110499 59.999647 0.99999999

represented as
slope (N)=N,+ N, In x (18)

The values of N;, N, and the correlation coefficients for the four approxi-
mations are given in Table 9. On substituting the numerical values in eqn.

TABLE 9
Results of slope vs. In x plots

Scholmilch Semiconvergent New series Three term
Slope N, 0.969609 0.969383 0.969703 0.969609
Intercept N, 0.137537 0.138402 0.137178 0.137533

r 0.9999840 0.9999829 0.9999844 0.9999840
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TABLE 10
Results of intercept vs. x plots

Scholmilch Semiconvergent New series Three term
Slope M, 1.000079 1.000077 1.000081 1.000075
Intercept M; —0.004414 —0.004303 —0.004501 —0.004217
r 1.00000000 1.0000000 0.999999998 0.999999997

(18), the following equations were obtained for the data from the four
approximations

Scholmilch (N) = 0.137537 + 0.9696091n x (19)
Semiconvergent (N ) =0.138402 + 0.969383In x (20)
New series (N)=10.137178 + 0.969703In x (21)
Three term (N) = 0.137533 + 0.969609In x (22)

Relation between intercepts and x

A similar examination of the data showed that the intercept, M varies
linearly with x. The relation can be represented as

Intercept (M) =M, + M,x (23)
The numerical values of slope M, and intercept M, along with the correla-

tion coefficients are given in Table 10. Substituting the numerical values of
M, and M,, we get the following equations for the four approximations

Scholmilch (M) = —0.004414 + 1.000079x (24)
Semiconvergent (M) = —0.004303 + 1.000077x (25)
New series (M) = —0.004501 + 1.000081x (26)
Three term (M) = —0.004217 + 1.000075x (27)

For all the plots, the correlation coefficients are very high, indicating the
goodness of the fits,

Equations relating slopes and intercepts

Substituting eqns. (18) and (23) in eqn. (17), we get the relation showing
the total dependence of —In p(x) and x. The final form of the equation can
be represented as

—lnp(x)=M,+ M,x+ (N, + NyIn x)b (28)

Substituting the numerical values of slopes M, and N, and intercepts M,
and N, in eqn. (28) we get the following equations for —In p(x)
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Scholmilch
—In p(x) = —0.004414 + 1.000079x + (0.137537 + 0.969609In x)b...
(29)
Semiconvergent
—In p(x) = —0.004303 + 1.000077x + (0.138402 + 0.969383In x)b...
(30)
New series
—1In p(x) = —0.004501 + 1.000081x + (0.137178 + 0.969703In x)b...
(31)
Three term
—In p(x) = —0.004217 + 1.000075x + (0.137533 + 0.968709In x)b...
(32)

When b = 2, eqns. (29)—(32) become the Arrhenius temperature integral.

The validity of these equations was tested by comparing the —In p(x)
values calculated using eqns. (29)-(32) with the theoretical values of
—In p(x). The percentage deviations from the theoretical values (for b = 2)
are 5.670 X 1072, 5.528 X 1072, 5.796 X 107% and 5.629 x 1072, respec-
tively, for eqns. (29), (30), (31) and (32), when x=15. Similarly, the
percentage deviation from the theoretical values are 8.424 X 1073, 5.013 X
1073, 8.301 X 10™2 and 8.496 X 103, respectively, for eqns. (29), (30), (31)
and (32), when x = 60. Thus, the theoretical as well as the computed values
of the temperature integrals are very close for the four approximations
employed in this study.

CONCLUSIONS

In the present study, the temperature integrals evaluated with non-integer
values of b have been compared for different series approximations. Since E
and 1/T are separate linear functions of In p(x), the combined dependence
of In p(x) on x (x= E/RT) for different values of b has been established
and equations are presented to relate —In p(x) accurately to the value of b,
using four series approximations.

Most of the equations derived are only for the temperature integral, where
b=2. In this study it is observed that the general series solutions and the
Scholmilch series are equally applicable in the evaluation of p(x) functions
for values of b ranging from —2 to +4. The values of p(x) computed from
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the closed form three term approximation, derived from the general series
solution, also show good agreement with those from the Scholmilch or series
approximations.

An important aspect of this study is that —In p(x) can be rapidly
determined for any value of x and » by simple substitution in any of the
eqns. (29)—(32) or from the tables. Thus, it is possible to obtain the values of
the general temperature integrals at any set of conditions for the analysis of
non-isothermal kinetic data.
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